Genetic diversity of avocado from the southern highlands of Tanzania as revealed by microsatellite markers

微卫星标记揭示坦桑尼亚南部高地鳄梨的遗传多样性

阅读:5
作者:Ibrahim Juma, Mulatu Geleta, Agnes Nyomora, Ganapathi Varma Saripella, Helena Persson Hovmalm, Anders S Carlsson, Moneim Fatih, Rodomiro Ortiz

Background

Avocado is an important cash crop in Tanzania, however its genetic diversity is not thoroughly investigated. This study was undertaken to explore the genetic diversity of avocado in the southern highlands using microsatellite markers. A total of 226 local avocado trees originating from seeds were sampled in eight districts of the Mbeya, Njombe and Songwe regions. Each district was considered as a population. The diversity at 10 microsatellite loci was investigated.

Conclusion

High diversity detected in the analysed avocado germplasm implies that this germplasm is a potentially valuable source of variable alleles that might be harnessed for genetic improvement of this crop in Tanzania. The mixing of avocado trees from different districts observed in the PCA and dendrogram points to strong gene flow among the avocado populations, which led to population admixture revealed in the STRUCTURE analysis. However, there is still significant differentiation among the tree populations from different districts that can be utilized in the avocado breeding program.

Results

A total of 167 alleles were detected across the 10 loci with an average of 16.7 ± 1.3 alleles per locus. The average expected and observed heterozygosity were 0.84 ± 0.02 and 0.65 ± 0.04, respectively. All but two loci showed a significant deviation from the Hardy-Weinberg principle. Analysis of molecular variance showed that about 6% of the variation was partitioned among the eight geographic populations. Population FST pairwise comparisons revealed lack of genetic differentiation for the seven of 28 population pairs tested. The principal components analysis (PCA) and hierarchical cluster analysis showed a mixing of avocado trees from different districts. The model-based STRUCTURE subdivided the trees samples into four major genetic clusters.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。