Inhibition of enhancer of zeste homolog 2 (EZH2) overcomes enzalutamide resistance in castration-resistant prostate cancer

抑制增强子组蛋白同源物2 (EZH2) 可克服去势抵抗性前列腺癌中的恩扎卢胺耐药性

阅读:2
作者:Yunfeng Bai ,Zhuangzhuang Zhang ,Lijun Cheng ,Ruixin Wang ,Xiaoliang Chen ,Yifan Kong ,Feng Feng ,Nihal Ahmad ,Lang Li ,Xiaoqi Liu

Abstract

Enzalutamide, approved by the United States Food and Drug Administration in 2018 for the management of metastatic castration-resistant prostate cancer (CRPC), is an androgen receptor (AR) inhibitor. It blocks androgen binding to the AR, AR nuclear translocation, and AR-mediated DNA binding. Unfortunately, a considerable proportion of tumors eventually develop resistance during the treatment. The molecular mechanisms underlying enzalutamide resistance are not completely understood. Enhancer of zeste homolog 2 (EZH2), the catalytic subunit of polycomb repressor complex 2, has been proposed as a prognostic marker for prostate cancer (PCa). With the goal to test whether EZH2 also plays a critical role in acquisition of enzalutamide resistance in CRPC, here we examined whether EZH2 inhibition/depletion enhances the efficacy of enzalutamide in enzalutamide-resistant PCa cells. We show that combining the EZH2 inhibitor GSK126 with enzalutamide synergistically inhibits cell proliferation and colony formation and promotes apoptosis in enzalutamide-resistant PCa cells. EZH2 depletion also overcomes enzalutamide resistance in both cultured cells and xenograft tumors. Mechanistically, we found that EZH2 directly binds to the promoter of prostate-specific antigen and inhibits its expression in enzalutamide-resistant PCa cells. In agreement, bioinformatics analysis of clinical RNA sequencing data involving GSEA indicated a strong correlation between AR and EZH2 gene expression during PCa progression. Our study provides critical insights into the mechanisms underlying enzalutamide resistance, which may offer new approaches to enhance the efficacy of enzalutamide in CRPC.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。