Poly(I:C) promotes neurotoxic amyloid β accumulation through reduced degradation by decreasing neprilysin protein levels in astrocytes

聚肌氨酸:胞嘧啶通过降低星形胶质细胞中的脑啡肽酶蛋白水平,减少降解,从而促进神经毒性淀粉样β蛋白的积累

阅读:6
作者:Naoki Yamamoto, Takuya Tokumon, Ayako Obuchi, Mari Kono, Katsuyasu Saigo, Mamoru Tanida, Yuri Ikeda-Matsuo, Kazuya Sobue

Abstract

Inflammation associated with viral infection of the nervous system has been involved in the pathogenesis of neurodegenerative diseases, such as Alzheimer's disease (AD) and multiple sclerosis. Polyinosinic:polycytidylic acid (poly[I:C]) is a Toll-like receptor 3 (TLR3) agonist that mimics the inflammatory response to systemic viral infections. Despite growing recognition of the role of glial cells in AD pathology, their involvement in the accumulation and clearance of amyloid β (Aβ) in the brain of patients with AD is poorly understood. Neprilysin (NEP) and insulin-degrading enzyme (IDE) are the main Aβ-degrading enzymes in the brain. This study investigated whether poly(I:C) regulated Aβ degradation and neurotoxicity by modulating NEP and IDE protein levels through TLR3 in astrocytes. To this aim, primary rat primary astrocyte cultures were treated with poly(I:C) and inhibitors of the TLR3 signaling. Protein levels were assessed by Western blot. Aβ toxicity to primary neurons was measured by lactate dehydrogenase release. Poly(I:C) induced a significant decrease in NEP levels on the membrane of astrocytes as well as in the culture medium. The degradation of exogenous Aβ was markedly delayed in poly(I:C)-treated astrocytes. This delay significantly increased the neurotoxicity of exogenous Aβ1-42. Altogether, these results suggest that viral infections induce Aβ neurotoxicity by decreasing NEP levels in astrocytes and consequently preventing Aβ degradation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。