Infantile neurodegenerative disorder associated with mutations in TBCD, an essential gene in the tubulin heterodimer assembly pathway

与 TBCD 突变相关的婴儿神经退行性疾病,TBCD 是微管蛋白异二聚体组装途径中的重要基因

阅读:5
作者:Shimon Edvardson, Guoling Tian, Hayley Cullen, Hannah Vanyai, Linh Ngo, Saiuj Bhat, Adi Aran, Muhannad Daana, Naderah Da'amseh, Bassam Abu-Libdeh, Nicholas J Cowan, Julian Ik-Tsen Heng, Orly Elpeleg

Abstract

Mutation in a growing spectrum of genes is known to either cause or contribute to primary or secondary microcephaly. In primary microcephaly the genetic determinants frequently involve mutations that contribute to or modulate the microtubule cytoskeleton by causing perturbations of neuronal proliferation and migration. Here we describe four patients from two unrelated families each with an infantile neurodegenerative disorder characterized by loss of developmental milestones at 9–24 months of age followed by seizures, dystonia and acquired microcephaly. The patients harboured homozygous missense mutations (A475T and A586V) in TBCD, a gene encoding one of five tubulin-specific chaperones (termed TBCA-E) that function in concert as a nanomachine required for the de novo assembly of the α/β tubulin heterodimer. The latter is the subunit from which microtubule polymers are assembled. We found a reduced intracellular abundance of TBCD in patient fibroblasts to about 10% (in the case of A475T) or 40% (in the case of A586V) compared to age-matched wild type controls. Functional analyses of the mutant proteins revealed a partially compromised ability to participate in the heterodimer assembly pathway. We show via in utero shRNA-mediated suppression that a balanced supply of tbcd is critical for cortical cell proliferation and radial migration in the developing mouse brain. We conclude that TBCD is a novel functional contributor to the mammalian cerebral cortex development, and that the pathological mechanism resulting from the mutations we describe is likely to involve compromised interactions with one or more TBCD-interacting effectors that influence the dynamics and behaviour of the neuronal cytoskeleton.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。