Downregulation of CDC20 Increases Radiosensitivity through Mcl-1/p-Chk1-Mediated DNA Damage and Apoptosis in Tumor Cells

CDC20 下调通过 Mcl-1/p-Chk1 介导的肿瘤细胞 DNA 损伤和细胞凋亡增加放射敏感性

阅读:6
作者:Yang Gao, Pengbo Wen, Bin Chen, Guanshuo Hu, Lijun Wu, An Xu, Guoping Zhao

Abstract

Radiotherapy is an important modality for the local control of human cancers, but the radioresistance induced by aberrant apoptotic signaling is a hallmark of cancers. Restoring the aberrant apoptotic pathways is an emerging strategy for cancer radiotherapy. In this study, we determined that targeting cell division cycle 20 (CDC20) radiosensitized colorectal cancer (CRC) cells through mitochondrial-dependent apoptotic signaling. CDC20 was overexpressed in CRC cells and upregulated after radiation. Inhibiting CDC20 activities genetically or pharmacologically suppressed the proliferation and increased radiation-induced DNA damage and intrinsic apoptosis in CRC cells. Mechanistically, knockdown of CDC20 suppressed the expression of antiapoptotic protein Mcl-1 but not other Bcl-2 family proteins. The expressions of CDC20 and Mcl-1 respond to radiation simultaneously through direct interaction, as evidenced by immunoprecipitation and glutathione S-transferase (GST) pull-down assays. Subsequently, decreased Mcl-1 expression inhibited the expression level of phosphorylated checkpoint kinase 1 (p-Chk1), thereby resulting in impaired DNA damage repair through downregulating the homologous recombination repair protein Rad51 and finally causing apoptotic signaling. In addition, both CDC20 and Chk1 inhibitors together, through in vivo studies, confirmed the radiosensitizing effect of CDC20 via inhibiting Mcl-1 and p-Chk1 expression. In summary, our results indicate that targeting CDC20 is a promising strategy to improve cancer radiotherapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。