Epidermal growth factor mediated healing in stem cell-derived vocal fold mucosa

表皮生长因子介导干细胞衍生的声带粘膜的愈合

阅读:7
作者:Liliana Palencia, Amritava Das, Sean P Palecek, Susan L Thibeault, Ciara Leydon

Background

The goal of vocal fold wound healing is the reconstitution of functional tissue, including a structurally and functionally intact epithelium. Mechanisms underlying reepithelialization in vocal folds are not known, although it is suspected that healing involves the interplay between several growth factors. We used a three-dimensional human embryonic stem cell-derived model of vocal fold mucosa to examine the effects of one growth factor, exogenous epidermal growth factor (EGF), on wound healing. Materials and

Conclusions

Exogenous EGF increases the rate of wound healing in an EGFR-dependent manner in a three-dimensional stem cell-derived model of vocal fold mucosa. This model of wound healing can be used to gain insight into the mechanisms that regulate vocal fold epithelial repair after injury.

Methods

A scratch wound was created in the in vitro model. Rate of wound healing, epidermal growth factor receptor (EGFR) activation, and cell proliferation after injury were analyzed with and without application of both exogenous EGF and an EGFR inhibitor, gefitinib.

Results

Wound repair after injury was significantly hastened by application of exogenous EGF (13.3 μm/h, ± 2.63) compared with absence of exogenous EGF (7.1 μm/h ± 2.84), but inhibited with concurrent addition of Gefitinib (5.2 μm/h, ± 2.23), indicating that EGF mediates wound healing in an EGFR-dependent manner. Immunohistochemistry revealed that EGFR activation occurred only in the presence of exogenous EGF. Although not statistically significant, increased density of Ki67 staining in the epithelium adjacent to the scratch wound was observed after treatment with EGF, suggesting a tendency for exogenous EGF to increase epithelial cell proliferation. Conclusions: Exogenous EGF increases the rate of wound healing in an EGFR-dependent manner in a three-dimensional stem cell-derived model of vocal fold mucosa. This model of wound healing can be used to gain insight into the mechanisms that regulate vocal fold epithelial repair after injury.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。