Dihydromyricetin resists inflammation-induced muscle atrophy via ryanodine receptor-CaMKK-AMPK signal pathway

二氢杨梅素通过瑞尼丁受体-CaMKK-AMPK信号通路抵抗炎症引起的肌肉萎缩

阅读:4
作者:Lianjie Hou, Fangyi Jiang, Bo Huang, Weijie Zheng, Yufei Jiang, Gengyuan Cai, Dewu Liu, Ching Yuan Hu, Chong Wang

Abstract

Skeletal muscle plays a pivotal role in the maintenance of physical and metabolic health. Skeletal muscle atrophy usually results in physical disability, inferior quality of life and higher health care costs. The higher incidence of muscle atrophy in obese and ageing groups is due to increased levels of inflammatory factors during obesity and ageing. Dihydromyricetin, as a bioactive polyphenol, has been used for anti-inflammatory, anti-tumour and improving insulin sensitivity. However, there are no published reports demonstrated the dihydromyricetin effect on inflammation-induced skeletal muscle atrophy. In this study, we first confirmed the role of dihydromyricetin in inflammation-induced skeletal muscle atrophy in vivo and in vitro. Then, we demonstrated that dihydromyricetin resisted inflammation-induced skeletal muscle atrophy by activating Ca2+ -CaMKK-AMPK through signal pathway blockers, Ca2+ probes and immunofluorescence. Finally, we clarified that dihydromyricetin activated Ca2+ -CaMKK-AMPK signalling pathway through interaction with the ryanodine receptor, its target protein, by drug affinity responsive target stability (DARTS). Our results not only demonstrated that dihydromyricetin resisted inflammation-induced muscle atrophy via the ryanodine receptor-CaMKK-AMPK signal pathway but also discovered that the target protein of dihydromyricetin is the ryanodine receptor. Our results provided experimental data for the development of dihydromyricetin as a functional food and new therapeutic strategies for treating or preventing skeletal muscle atrophy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。