A Therapeutically Targetable NOTCH1-SIRT1-KAT7 Axis in T-cell Leukemia

T细胞白血病中可作为治疗靶点的NOTCH1-SIRT1-KAT7轴

阅读:1
作者:Olga Lancho ,Amartya Singh # ,Victoria da Silva-Diz # ,Maya Aleksandrova # ,Jesminara Khatun # ,Luca Tottone ,Patricia Renck Nunes ,Shirley Luo ,Caifeng Zhao ,Haiyan Zheng ,Eric Chiles ,Zhenyu Zuo ,Pedro P Rocha ,Xiaoyang Su ,Hossein Khiabanian ,Daniel Herranz

Abstract

T-cell acute lymphoblastic leukemia (T-ALL) is a NOTCH1-driven disease in need of novel therapies. Here, we identify a NOTCH1-SIRT1-KAT7 link as a therapeutic vulnerability in T-ALL, in which the histone deacetylase SIRT1 is overexpressed downstream of a NOTCH1-bound enhancer. SIRT1 loss impaired leukemia generation, whereas SIRT1 overexpression accelerated leukemia and conferred resistance to NOTCH1 inhibition in a deacetylase-dependent manner. Moreover, pharmacologic or genetic inhibition of SIRT1 resulted in significant antileukemic effects. Global acetyl proteomics upon SIRT1 loss uncovered hyperacetylation of KAT7 and BRD1, subunits of a histone acetyltransferase complex targeting H4K12. Metabolic and gene-expression profiling revealed metabolic changes together with a transcriptional signature resembling KAT7 deletion. Consistently, SIRT1 loss resulted in reduced H4K12ac, and overexpression of a nonacetylatable KAT7-mutant partly rescued SIRT1 loss-induced proliferation defects. Overall, our results uncover therapeutic targets in T-ALL and reveal a circular feedback mechanism balancing deacetylase/acetyltransferase activation with potentially broad relevance in cancer. Significance: We identify a T-ALL axis whereby NOTCH1 activates SIRT1 through an enhancer region, and SIRT1 deacetylates and activates KAT7. Targeting SIRT1 shows antileukemic effects, partly mediated by KAT7 inactivation. Our results reveal T-ALL therapeutic targets and uncover a rheostat mechanism between deacetylase/acetyltransferase activities with potentially broader cancer relevance. This article is highlighted in the In This Issue feature, p. 1.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。