Ameliorative Properties of Boronic Compounds in In Vitro and In Vivo Models of Alzheimer's Disease

硼化合物在阿尔茨海默病体内和体外模型中的改善特性

阅读:6
作者:Panchanan Maiti, Jayeeta Manna, Zoe N Burch, Denise B Flaherty, Joseph D Larkin, Gary L Dunbar

Abstract

Alzheimer's disease (AD) is characterized by amyloid (Aβ) aggregation, hyperphosphorylated tau, neuroinflammation, and severe memory deficits. Reports that certain boronic compounds can reduce amyloid accumulation and neuroinflammation prompted us to compare trans-2-phenyl-vinyl-boronic-acid-MIDA-ester (TPVA) and trans-beta-styryl-boronic-acid (TBSA) as treatments of deficits in in vitro and in vivo models of AD. We hypothesized that these compounds would reduce neuropathological deficits in cell-culture and animal models of AD. Using a dot-blot assay and cultured N2a cells, we observed that TBSA inhibited Aβ42 aggregation and increased cell survival more effectively than did TPVA. These TBSA-induced benefits were extended to C. elegans expressing Aβ42 and to the 5xFAD mouse model of AD. Oral administration of 0.5 mg/kg dose of TBSA or an equivalent amount of methylcellulose vehicle to groups of six- and 12-month-old 5xFAD or wild-type mice over a two-month period prevented recognition- and spatial-memory deficits in the novel-object recognition and Morris-water-maze memory tasks, respectively, and reduced the number of pyknotic and degenerated cells, Aβ plaques, and GFAP and Iba-1 immunoreactivity in the hippocampus and cortex of these mice. These findings indicate that TBSA exerts neuroprotective properties by decreasing amyloid plaque burden and neuroinflammation, thereby preventing neuronal death and preserving memory function in the 5xFAD mice.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。