N-substituted benztropine analogs: selective dopamine transporter ligands with a fast onset of action and minimal cocaine-like behavioral effects

N-取代的苯扎托品类似物:具有快速起效和最小可卡因样行为效应的选择性多巴胺转运蛋白配体

阅读:6
作者:Su-Min Li, Theresa A Kopajtic, Matthew J O'Callaghan, Gregory E Agoston, Jianjing Cao, Amy Hauck Newman, Jonathan L Katz

Abstract

Previous studies suggested that differences between the behavioral effects of cocaine and analogs of benztropine were related to the relatively slow onset of action of the latter compounds. Several N-substituted benztropine analogs with a relatively fast onset of effects were studied to assess whether a fast onset of effects would render the effects more similar to those of cocaine. Only one of the compounds increased locomotor activity, and the increases were modest compared with those of 10 to 20 mg/kg cocaine. In rats trained to discriminate 10 mg/kg cocaine from saline none of the compounds produced more than 40% cocaine-like responds up to 2 h after injection. None of the compounds produced place-conditioning when examined up to 90 min after injection, indicating minimal abuse liability. The compounds had 5.6 to 30 nM affinities at the dopamine transporter (DAT), with uniformly lower affinities at norepinephrine and serotonin transporters (from 490-4600 and 1420-7350 nM, respectively). Affinities at muscarinic M(1) receptors were from 100- to 300-fold lower than DAT affinities, suggesting minimal contribution of those sites to the behavioral effects of the compounds. Affinities at histaminic H(1) sites were from 11- to 43-fold lower than those for the DAT. The compounds also had affinity for sigma, 5-hydroxytryptamine(1) (5-HT(1)), and 5-HT(2) receptors that may have contributed to their behavioral effects. Together, the results indicate that a slow onset of action is not a necessary condition for reduced cocaine-like effects of atypical DAT ligands and suggest several mechanisms that may contribute to the reduced cocaine-like efficacy of these compounds.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。