Deoxynivalenol induces apoptosis and autophagy in human prostate epithelial cells via PI3K/Akt signaling pathway

脱氧雪腐镰刀菌烯醇通过PI3K/Akt信号通路诱导人前列腺上皮细胞凋亡和自噬

阅读:5
作者:Karolina Kowalska, Marta Justyna Kozieł, Dominika Ewa Habrowska-Górczyńska, Kinga Anna Urbanek, Kamila Domińska, Agnieszka Wanda Piastowska-Ciesielska

Abstract

Phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway is one of the most deregulated signaling pathway in prostate cancer. It controls basic processes in cells: cell proliferation and death. Any disturbances in the balance between cell death and survival might result in carcinogenesis. Deoxynivalenol (DON) is one of the most common mycotoxins, a toxic metabolites of fungi, present in our everyday diet and feed. Although previous studies reported DON to induce oxidative stress, modulate steroidogenesis, DNA damage and cell cycle modulation triggering together its toxicity, its effect on normal prostate epithelial cells is not known. The aim of the study was to evaluate the effect of DON on the apoptosis and autophagy in normal prostate epithelial cells via modulation of PI3K/Akt signaling pathway. The results showed that DON in a dose of 30 µM and 10 µM induces oxidative stress, DNA damage and cell cycle arrest in G2/M cell cycle phase. The higher concentration of DON induces apoptosis, whereas lower one autophagy in PNT1A cells, indicating that modulation of PI3K/Akt by DON results in the induction of autophagy triggering apoptosis in normal prostate epithelial cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。