GABAergic regulation of cerebellar NG2 cell development is altered in perinatal white matter injury

围产期白质损伤可改变 GABA 能调节小脑 NG2 细胞的发育

阅读:5
作者:Marzieh Zonouzi, Joseph Scafidi, Peijun Li, Brian McEllin, Jorge Edwards, Jeffrey L Dupree, Lloyd Harvey, Dandan Sun, Christian A Hübner, Stuart G Cull-Candy, Mark Farrant, Vittorio Gallo

Abstract

Diffuse white matter injury (DWMI), a leading cause of neurodevelopmental disabilities in preterm infants, is characterized by reduced oligodendrocyte formation. NG2-expressing oligodendrocyte precursor cells (NG2 cells) are exposed to various extrinsic regulatory signals, including the neurotransmitter GABA. We investigated GABAergic signaling to cerebellar white matter NG2 cells in a mouse model of DWMI (chronic neonatal hypoxia). We found that hypoxia caused a loss of GABAA receptor-mediated synaptic input to NG2 cells, extensive proliferation of these cells and delayed oligodendrocyte maturation, leading to dysmyelination. Treatment of control mice with a GABAA receptor antagonist or deletion of the chloride-accumulating transporter NKCC1 mimicked the effects of hypoxia. Conversely, blockade of GABA catabolism or GABA uptake reduced NG2 cell numbers and increased the formation of mature oligodendrocytes both in control and hypoxic mice. Our results indicate that GABAergic signaling regulates NG2 cell differentiation and proliferation in vivo, and suggest that its perturbation is a key factor in DWMI.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。