Notch signaling in response to excitotoxicity induces neurodegeneration via erroneous cell cycle reentry

响应兴奋性毒性的 Notch 信号通过错误的细胞周期重返引发神经退行性病变

阅读:7
作者:S Marathe, S Liu, E Brai, M Kaczarowski, L Alberi

Abstract

Neurological disorders such as Alzheimer's disease, stroke and epilepsy are currently marred by the lack of effective treatments to prevent neuronal death. Erroneous cell cycle reentry (CCR) is hypothesized to have a causative role in neurodegeneration. We show that forcing S-phase reentry in cultured hippocampal neurons is sufficient to induce neurodegeneration. We found that kainic-acid treatment in vivo induces erroneous CCR and neuronal death through a Notch-dependent mechanism. Ablating Notch signaling in neurons provides neuroprotection against kainic acid-induced neuronal death. We further show that kainic-acid treatment activates Notch signaling, which increases the bioavailability of CyclinD1 through Akt/GSK3β pathway, leading to aberrant CCR via activation of CyclinD1-Rb-E2F1 axis. In addition, pharmacological blockade of this pathway at critical steps is sufficient to confer resistance to kainic acid-induced neurotoxicity in mice. Taken together, our results demonstrate that excitotoxicity leads to neuronal death in a Notch-dependent manner through erroneous CCR.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。