MicroRNA-455-5p/CPEB1 pathway mediates Aβ-related learning and memory deficits in a mouse model of Alzheimer's disease

MicroRNA-455-5p/CPEB1 通路介导阿尔茨海默病小鼠模型中 Aβ 相关的学习和记忆缺陷

阅读:7
作者:Gelei Xiao, Qianwei Chen, Xuewei Zhang

Abstract

Alzheimer's disease (AD), a common neurodegenerative disease, is the main cause of dementia, with cognitive decline as the core symptom observed during diagnosis. Synaptic loss may be the main cause of early cognitive dysfunction in AD, but the detailed mechanism is still unclear. In this study, we investigated the role of abnormal miR-455-5p/CPEB1 pathway in AD mouse model. We found that miR-455-5p was upregulated, while its downstream target, cytoplasmic polyadenylation element-binding 1 (CPEB1), was downregulated in the hippocampus of APP/PS1 mice at the age of 9 m. Abnormal miR-455-5p/CPEB1 pathway mediated cognitive deficits in APP/PS1 mice through suppressing α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor expressions. And miR-455-5p suppression, CPEB1 overexpression or application of a peptide disrupting the miR-455-5p/CPEB1 interaction in CA1 of APP/PS1 mice rescued AD-like phenotypes in mice, including deficits in synaptic plasticity and memory. In conclusion, our results indicated that miRNA-455-5p/CPEB1 pathway mediated synaptic and memory deficits in Alzheimer's Disease through targeting on AMPARs, providing a potential therapeutic strategy for AD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。