Pyrazolone derivative C29 protects against HFD-induced obesity in mice via activation of AMPK in adipose tissue

吡唑酮衍生物 C29 通过激活脂肪组织中的 AMPK 预防小鼠因高脂饮食引起的肥胖

阅读:5
作者:Bo-Han Li, Mei Zhang, Ya-Nan Duan, Lin Shuai, Hao-Wen Jiang, Jia Li, Fa-Jun Nan, Jing-Ya Li

Abstract

Beige adipocytes have been considered as a potential strategy in anti-obesity therapy because of its thermogenic capacity. AMP-activated protein kinase (AMPK) plays important roles in regulating adipose tissue function. C29 is a novel pyrazolone derivative with AMPK activity. In the current study, we investigated the role of C29 in the regulation of thermogenesis using differentiated adipocytes and diet-induced obese mice, and explored the mechanisms that might be involved in energy expenditure via adipocyte AMPK activation. We showed that treatment with C29 (2.5-10 μM) concentration-dependently increased thermogenesis in differentiated preadipocytes separated from inguinal white adipose tissue (iWAT), evidenced by increased expression levels of thermogenesis markers such as Ucp1, Pgc-1α, Dio2, Prdm16, Cox7a1, Cox8b, Elovl3, and Cidea, fatty acid oxidation (FAO) genes including Cpt1a, Lcad and Pparα, as well as beige-selective genes such as Cd137, Tmem26, Slc27a1, and Tbx1. In high-fat diet (HFD)-fed mice, oral administration of C29 (30 mg·kg-1·day-1) for 9 weeks alleviated HFD-induced obesity, promoted energy expenditure and modulated iWAT browning. However, these effects were not observed in adipose-specific AMPKα1/α2 knockout (AKO) mice following C29 administration. Together, this study demonstrates that C29 regulates energy balance via adipocyte AMPK. Our findings show that the discovery of AMPK activators that specifically target adipose tissue may have therapeutic potential for treating obesity-related metabolic diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。