Combined culture experiment of mouse bone marrow mesenchymal stem cells and bioceramic scaffolds

小鼠骨髓间充质干细胞与生物陶瓷支架联合培养实验

阅读:7
作者:Xin Huang, Zhenhao Chen, Guanglei Zhao, Jingsheng Shi, Gangyong Huang, Feiyan Chen, Yibing Wei, Jun Xia, Jie Chen, Siqun Wang

Abstract

Articular cartilage injuries are common orthopedic conditions that severely affect the quality of life of patients. Tissue engineering can facilitate cartilage repair and the key points involve scaffolding and seed cell selection. Pre-experiments found a range of microstructures of bioceramic scaffolds suitable for chondrocyte adhesion and proliferation, and maintaining chondrocyte phenotype. Three-dimensional cultures of bone marrow mesenchymal stem cell (BMSC) scaffolds were implanted into mice. According to the shape of the bioceramic scaffolds and the implantation time in vivo, RNA sequencing was performed on the removed scaffolds to explore the molecular mechanism. The in vitro bone plate culture can induce differentiation of chondrocytes, making culture different to that produced in vitro. Implantation of scaffolds in vivo increases the expression of bone-related genes. The ceramic rod-like material was found to be superior to the disc shape, and the bone repair effect was more marked with longer implantation times. Gene Ontology analysis revealed that 'cell chemotaxis', 'negative regulation of ossification' and 'bone development' pathways were involved in recovery. It was further confirmed that BMSCs were suitable as seed cells for cartilage tissue engineering, and that the β-tricalcium phosphate scaffold maybe ideal as cartilage tissue engineering scaffold material. The present research provided new insights into the molecular mechanism of cartilage repair by BMSCs and bioceramic scaffolds. Bioinformatics analysis revealed that AMMECR1L-like protein, tumor necrosis factor-induced protein 2, inhibitor of nuclear factor-B kinase subunit and protein kinase C type and 'negative regulation of ossification' and 'bone development' pathways may be involved in osteoblast maturation and bone regeneration.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。