The antibiotic monensin causes cell cycle disruption of Toxoplasma gondii mediated through the DNA repair enzyme TgMSH-1

抗生素莫能菌素通过 DNA 修复酶 TgMSH-1 介导导致弓形虫细胞周期紊乱

阅读:6
作者:Mark D Lavine, Gustavo Arrizabalaga

Abstract

Monensin is a polyether ionophore antibiotic that is widely used in the control of coccidia in animals. Despite its significance in veterinary medicine, little is known about its mode of action and potential mechanisms of resistance in coccidian parasites. Here we show that monensin causes accumulation of the coccidian Toxoplasma gondii at an apparent late-S-phase cell cycle checkpoint. In addition, experiments utilizing a monensin-resistant T. gondii mutant show that this effect of monensin is dependent on the function of a mitochondrial homologue of the MutS DNA damage repair enzyme (TgMSH-1). Furthermore, the same TgMSH-1-dependent cell cycle disruption is observed with the antiparasitic ionophore salinomycin and the DNA alkylating agent methyl nitrosourea. Our results suggest a novel mechanism for the mode of action of monensin and salinomycin on coccidial parasites, in which the drug activates an MSH-1-dependent cell cycle checkpoint by an unknown mechanism, ultimately leading to the death of the parasite. This model would indicate that cell cycle disruption is an important mediator of drug susceptibility and resistance to ionophoric antibiotics in coccidian parasites.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。