Ryanodine receptor phosphorylation by calcium/calmodulin-dependent protein kinase II promotes life-threatening ventricular arrhythmias in mice with heart failure

钙/钙调蛋白依赖性蛋白激酶 II 对瑞安诺丁受体的磷酸化会导致心力衰竭小鼠发生危及生命的室性心律失常

阅读:4
作者:Ralph J van Oort, Mark D McCauley, Sayali S Dixit, Laetitia Pereira, Yi Yang, Jonathan L Respress, Qiongling Wang, Angela C De Almeida, Darlene G Skapura, Mark E Anderson, Donald M Bers, Xander H T Wehrens

Background

approximately half of patients with heart failure die suddenly as a result of ventricular arrhythmias. Although abnormal Ca(2+) release from the sarcoplasmic reticulum through ryanodine receptors (RyR2) has been linked to arrhythmogenesis, the molecular mechanisms triggering release of arrhythmogenic Ca(2+) remain unknown. We tested the hypothesis that increased RyR2 phosphorylation by Ca(2+)/calmodulin-dependent protein kinase II is both necessary and sufficient to promote lethal ventricular arrhythmias.

Conclusions

our results suggest that Ca(2+)/calmodulin-dependent protein kinase II phosphorylation of RyR2 Ca(2+) release channels at S2814 plays an important role in arrhythmogenesis and sudden cardiac death in mice with heart failure.

Results

mice in which the S2814 Ca(2+)/calmodulin-dependent protein kinase II site on RyR2 is constitutively activated (S2814D) develop pathological sarcoplasmic reticulum Ca(2+) release events, resulting in reduced sarcoplasmic reticulum Ca(2+) load on confocal microscopy. These Ca(2+) release events are associated with increased RyR2 open probability in lipid bilayer preparations. At baseline, young S2814D mice have structurally and functionally normal hearts without arrhythmias; however, they develop sustained ventricular tachycardia and sudden cardiac death on catecholaminergic provocation by caffeine/epinephrine or programmed electric stimulation. Young S2814D mice have a significant predisposition to sudden arrhythmogenic death after transverse aortic constriction surgery. Finally, genetic ablation of the Ca(2+)/calmodulin-dependent protein kinase II site on RyR2 (S2814A) protects mutant mice from pacing-induced arrhythmias versus wild-type mice after transverse aortic constriction surgery. Conclusions: our results suggest that Ca(2+)/calmodulin-dependent protein kinase II phosphorylation of RyR2 Ca(2+) release channels at S2814 plays an important role in arrhythmogenesis and sudden cardiac death in mice with heart failure.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。