Increased FGFR3 is involved in T-2 toxin-induced lesions of hypertrophic cartilage associated with endemic osteoarthritis

FGFR3 增高与地方性骨关节炎相关的 T-2 毒素诱发的肥大性软骨病变有关

阅读:7
作者:Ying Zhang, Qian Fang, Yinan Liu, Dan Zhang, Ying He, Fei Liu, Kun Sun, Jinghong Chen

Abstract

This study evaluated the effect of fibroblast growth factor receptor 3 (FGFR3) on damaged hypertrophic chondrocytes of Kashin-Beck disease (KBD). Immunohistochemical staining was used to evaluate FGFR3 expression in growth plates from KBD rat models and engineered cartilage. In vitro study, hypertrophic chondrocytes were pretreated by FGFR3 binding inhibitor (BGJ398) for 24 h before incubation at different T-2 toxin concentrations. Differentiation -related genes (Runx2, Sox9, and Col Ⅹ) and ECM degradation -related genes (MMP-13, Col Ⅱ) in the hypertrophic chondrocytes were analyzed using RT-PCR, and the corresponding proteins were analyzed using western blotting. Hypertrophic chondrocytes death was detected by the Annexin V/PI double staining assay. The integrated optical density of FGFR3 staining was increased in knee cartilage of rats and engineered cartilage treated with T-2 toxin. Both protein and mRNA levels of Runx2, Sox9, Col Ⅱ, and Col Ⅹ were decreased in a dose-dependent manner when exposed to the T-2 toxin and significantly upregulated by 1 μM BGJ398. The expression of MMP-1, MMP-9, and MMP-13 increased in a dose-dependent manner when exposed to T-2 toxin and significantly reduced by 1 μM BGJ398. 1 μM BGJ398 could prevent early apoptosis and necrosis induced by the T-2 toxin. Inhibiting the FGFR3 signal could alleviate extracellular matrix degradation, abnormal chondrocytes differentiation, and excessive cell death in T-2 toxin-induced hypertrophic chondrocytes.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。