Activated phosphatidylinositol 3-kinase/Akt inhibits the transition of endothelial progenitor cells to mesenchymal cells by regulating the forkhead box subgroup O-3a signaling

活化的磷脂酰肌醇 3-激酶/Akt 通过调节叉头框亚群 O-3a 信号抑制内皮祖细胞向间充质细胞的转变

阅读:8
作者:Zongqi Zhang, Tiantian Zhang, Yaoyao Zhou, Xiaowei Wei, Jianbing Zhu, Junfeng Zhang, Changqian Wang

Aims

Endothelial progenitor cells (EPCs) differentiate into mature endothelial cells and may thus be candidates for ischemic disease therapy; however, the transition of EPCs to mesenchymal cells is not fully understood. We explored the role of phosphatidylinositol 3-kinase (PI3K)/Akt signaling in endothelial-to-mesenchymal transition (EndMT) induced by transforming growth factor beta 1 (TGF-β1).

Background and aims

Endothelial progenitor cells (EPCs) differentiate into mature endothelial cells and may thus be candidates for ischemic disease therapy; however, the transition of EPCs to mesenchymal cells is not fully understood. We explored the role of phosphatidylinositol 3-kinase (PI3K)/Akt signaling in endothelial-to-mesenchymal transition (EndMT) induced by transforming growth factor beta 1 (TGF-β1).

Conclusions

Activation of PI3K/Akt signaling by Lenti-PIK3R2 shRNA or by exogenous IGF-1 inhibits EndMT in EPCs via negative regulation of FoxO3a-dependent signaling.

Methods

Rat bone marrow-derived EPCs were isolated by using Ficoll-Isopaque Plus density-gradient centrifugation. EndMT was induced by TGF-β1 (5 ng/mL). PI3K/Akt signaling was activated by IGF-1 or Lenti-PIK3R2 shRNA. Additionally, FoxO3a expression was suppressed by a lentiviral vector (Lenti-FoxO3a shRNA). Smad3 and FoxO3a co-localization was detected by confocal immunofluorescence microscopy. The expressions of molecules involved in EndMT were exmined by using Western-blot analysis.

Results

EndMT of EPCs was fully developed after TGF-β1 treatment (5 ng/mL) for 7 days. PIK3R2 expression in EPCs was driven by TGF-β1. Lenti-PIK3R2 shRNA blocked alpha-smooth muscle actin (α-SMA) expression in EPCs treated with TGF-β1, drove PI3K/Akt activation, and increased expression of phosphorylated FoxO3a instead of phosphorylated Smad3. The effect of Lenti-PIK3R2 shRNA was reduced by LY294002, a specific inhibitor of PI3K. IGF-1 attenuated α-SMA protein expression in EPCs treated with TGF-β1. Similar to Lenti-PIK3R2 shRNA, IGF-1 also inhibited and elevated the phosphorylation of Smad3 and FoxO3a, respectively. IGF-1 disrupted the co-localization of these proteins in EPCs treated with TGF-β1. Lenti-FoxO3a shRNA transfection of EPCs suppressed expression of FoxO3a as well as that of the mesenchymal markers SM22α and α-SMA. Conclusions: Activation of PI3K/Akt signaling by Lenti-PIK3R2 shRNA or by exogenous IGF-1 inhibits EndMT in EPCs via negative regulation of FoxO3a-dependent signaling.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。