Sca-1+Lin-CD117- mesenchymal stem/stromal cells induce the generation of novel IRF8-controlled regulatory dendritic cells through Notch-RBP-J signaling

Sca-1+Lin-CD117-间充质干细胞/基质细胞通过 Notch-RBP-J 信号诱导产生新型 IRF8 控制的调节性树突状细胞

阅读:5
作者:Xingxia Liu, Shaoda Ren, Chaozhuo Ge, Kai Cheng, Martin Zenke, Armand Keating, Robert C H Zhao

Abstract

Mesenchymal stem/stromal cells (MSCs) can influence the destiny of hematopoietic stem/progenitor cells (HSCs) and exert broadly immunomodulatory effects on immune cells. However, how MSCs regulate the differentiation of regulatory dendritic cells (regDCs) from HSCs remains incompletely understood. In this study, we show that mouse bone marrow-derived Sca-1(+)Lin(-)CD117(-) MSCs can drive HSCs to differentiate into a novel IFN regulatory factor (IRF)8-controlled regDC population (Sca(+) BM-MSC-driven DC [sBM-DCs]) when cocultured without exogenous cytokines. The Notch pathway plays a critical role in the generation of the sBM-DCs by controlling IRF8 expression in an RBP-J-dependent way. We observed a high level of H3K27me3 methylation and a low level of H3K4me3 methylation at the Irf8 promoter during sBM-DC induction. Importantly, infusion of sBM-DCs could alleviate colitis in mice with inflammatory bowel disease by inhibiting lymphocyte proliferation and increasing the numbers of CD4(+)CD25(+) regulatory T cells. Thus, these data infer a possible mechanism for the development of regDCs and further support the role of MSCs in treating immune disorders.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。