GATA1 Promotes Gemcitabine Resistance in Pancreatic Cancer through Antiapoptotic Pathway

GATA1 通过抗凋亡途径促进胰腺癌对吉西他滨产生耐药性

阅读:4
作者:Zhenyu Chang, Yanan Zhang, Jie Liu, Chengjian Guan, Xinjin Gu, Zelong Yang, Qinong Ye, Lihua Ding, Rong Liu

Abstract

Gemcitabine-based chemotherapy is the first-line treatment for pancreatic cancer. However, chemoresistance is a major obstacle to drug efficacy, leading to poor prognosis. Little progress has been achieved although multiple mechanisms are investigated. Therefore, effective strategies are urgently needed to overcome drug resistance. Here, we demonstrate that the transcription factor GATA binding protein 1 (GATA1) promotes gemcitabine resistance in pancreatic cancer through antiapoptotic pathway. GATA1 is highly expressed in pancreatic ductal adenocarcinoma (PDAC) tissues, and GATA1 status is an independent predictor of prognosis and response to gemcitabine therapy. Further investigation demonstrates GATA1 is involved in both intrinsic and acquired gemcitabine resistance in PDAC cells. Mechanistically, we find that GATA1 upregulates Bcl-XL expression by binding to its promoter and thus induces gemcitabine resistance through enhancing Bcl-XL mediated antiapoptosis in vitro and in vivo. Moreover, in PDAC patients, Bcl-XL expression is positively correlated with GATA1 level and predicts clinical outcomes and gemcitabine response. Taken together, our results indicate that GATA1 is a novel marker and potential target for pancreatic cancer. Targeting GATA1 combined with Bcl-XL may be a promising strategy to enhance gemcitabine response.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。