Enhanced Rishirilide Biosynthesis by a Rare In-Cluster Phosphopantetheinyl Transferase in Streptomyces xanthophaeus

链霉菌中一种稀有的簇内磷酸反式巯基乙胺基转移酶增强了利希里利德的生物合成

阅读:5
作者:Songya Zhang #, Shuai Fan #, Jing Zhu, Liying Zhou, Xiaohui Yan, Zhaoyong Yang, Tong Si, Tao Liu

Abstract

Phosphopantetheinyl transferases (PPTases) play important roles in activating apo-acyl carrier proteins (apo-ACPs) and apo-peptidyl carrier proteins (apo-PCPs) in both primary and secondary metabolism. PPTases catalyze the posttranslational modifications of those carrier proteins by covalent attachment of the 4'-phosphopantetheine group to a conserved serine residue. The protein-protein interactions between a PPTase and a cognate acyl or peptidyl carrier protein have important regulatory functions in microbial biosynthesis, but the molecular mechanism underlying their specific recognition remains elusive. In this study, we identified a new rishirilide biosynthetic gene cluster with a rare in-cluster PPTase from Streptomyces xanthophaeus no2. The function of this Sfp-type PPTase, SxrX, in rishirilide production was confirmed using genetic mutagenesis and biochemical characterization. We applied molecular modeling and site-directed mutagenesis to identify key residues mediating the protein-protein interaction between SxrX and its cognate ACP. In addition, six natural products were isolated from wild-type S. xanthophaeus no2 and the ΔsxrX mutant, including rishirilide A and lupinacidin A, that exhibited antimicrobial and anticancer activities, respectively. SxrX is the first Sfp-type PPTase identified from an aromatic polyketide biosynthetic gene cluster and shown to be responsible for high-level production of rishirilide derivatives. IMPORTANCE Genome mining has been a vital means for natural product drug discovery in the postgenomic era. The rishirilide-type polyketides have attracted attention due to their potent bioactivity, but the poor robustness of production hosts has limited further research and development. This study not only identifies a hyperproducer of rishirilides but also reveals a rare, in-cluster PPTase SxrX that plays an important role in boosting rishirilide biosynthesis. Experimental and computational investigations revealed new insights on the protein-protein interaction between SxrX and its cognate ACP with wide implications for understanding polyketide biosynthesis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。