The Impact of Macrophage- and Microglia-Secreted TNFα on Oncolytic HSV-1 Therapy in the Glioblastoma Tumor Microenvironment

巨噬细胞和小胶质细胞分泌的 TNFα 对胶质母细胞瘤肿瘤微环境中溶瘤 HSV-1 疗法的影响

阅读:10
作者:W Hans Meisen, Eric S Wohleb, Alena Cristina Jaime-Ramirez, Chelsea Bolyard, Ji Young Yoo, Luke Russell, Jayson Hardcastle, Samuel Dubin, Kamaldeen Muili, Jianhua Yu, Michael Caligiuri, Jonathan Godbout, Balveen Kaur

Conclusions

The results of these studies suggest that FDA approved TNFα inhibitors may significantly improve the efficacy of oncolytic virus therapy.

Purpose

Oncolytic herpes simplex viruses (oHSV) represent a promising therapy for glioblastoma (GBM), but their clinical success has been limited. Early innate immune responses to viral infection reduce oHSV replication, tumor destruction, and efficacy. Here, we characterized the antiviral effects of macrophages and microglia on viral therapy for GBM. Experimental design: Quantitative flow cytometry of mice with intracranial gliomas (±oHSV) was used to examine macrophage/microglia infiltration and activation. In vitro coculture assays of infected glioma cells with microglia/macrophages were used to test their impact on oHSV replication. Macrophages from TNFα-knockout mice and blocking antibodies were used to evaluate the biologic effects of TNFα on virus replication. TNFα blocking antibodies were used to evaluate the impact of TNFα on oHSV therapy in vivo.

Results

Flow-cytometry analysis revealed a 7.9-fold increase in macrophage infiltration after virus treatment. Tumor-infiltrating macrophages/microglia were polarized toward a M1, proinflammatory phenotype, and they expressed high levels of CD86, MHCII, and Ly6C. Macrophages/microglia produced significant amounts of TNFα in response to infected glioma cells in vitro and in vivo. Using TNFα-blocking antibodies and macrophages derived from TNFα-knockout mice, we discovered TNFα-induced apoptosis in infected tumor cells and inhibited virus replication. Finally, we demonstrated the transient blockade of TNFα from the tumor microenvironment with TNFα-blocking antibodies significantly enhanced virus replication and survival in GBM intracranial tumors. Conclusions: The results of these studies suggest that FDA approved TNFα inhibitors may significantly improve the efficacy of oncolytic virus therapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。