Development of a rapid viability polymerase chain reaction method for detection of Yersinia pestis

一种快速活力聚合酶链反应检测鼠疫耶尔森菌的方法的开发

阅读:8
作者:Staci R Kane, Sanjiv R Shah, Teneile M Alfaro

Abstract

Due to the occurrence of natural plague outbreaks and its historical usage as a biological weapon, Yersinia pestis is considered one of the high-priority biological threat agents. It can remain viable in certain environments including water for >100 days. Because of its slow-growth characteristic, it usually takes three or more days to detect and confirm the identity of viable Y. pestis cells by PCR, serological, or biochemical assays when using the traditional microbiological plate-culture-based analysis, and that too, assuming faster growing microbes present in a water sample do not mask the Y. pestis colonies and interfere with analysis. Therefore, a rapid-viability Polymerase Chain Reaction (RV-PCR) method was developed for detection of Y. pestis. The RV-PCR method combines 24 h-incubation broth culture in a 48-well plate, and pre- and post-incubation differential PCR analyses, thereby allowing for rapid and high-throughput sample analysis compared with the current plate culture method. One chromosomal and two plasmid gene target-based real-time PCR assays were down-selected, showing ca. 10 genome equivalent detection; the chromosomal assay was then used for RV-PCR method development. A 101-cell level (10-99 cells) sensitivity of detection was demonstrated even with complex sample backgrounds including known PCR inhibitors (ferrous sulfate and humic acid), as well as metal oxides and microbes present in Arizona Test Dust (ATD). The method sensitivity was maintained in the presence of dead Y. pestis cells up to 104 cells per sample. While affording high-throughput and rapid sample analysis, the 48-well plate format used in this method for sample enrichment significantly reduced labor requirements and generation of BioSafety Level-3 (BSL-3) laboratory waste as compared to the usual microbiological plate-culture-based methods. This method may serve as a model for other vegetative bacterial pathogens.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。