DEMETER plant DNA demethylase induces antiviral response by interferon signalling in animal cells

DEMETER植物DNA去甲基化酶通过干扰素信号在动物细胞中诱导抗病毒反应

阅读:7
作者:Young Geun Mok, Ki Young Choi, Seung Hwan Hong, Jin Hoe Huh

Abstract

DNA methylation is a prominent epigenetic modification in plants and animals regulated by similar mechanisms but the process of DNA demethylation is profoundly different. Unlike vertebrates that require a series of enzymatic conversions of 5-methylcytosine (5mC) into other bases for DNA demethylation, plants utilize the DEMETER (DME) family of 5mC DNA glycosylases to catalyze a direct removal of 5mC from DNA. Here we introduced Arabidopsis DME into human HEK-293T cells to allow direct 5mC excision, and observed that direct DNA demethylation activity was successfully implemented by DME expression. In addition, DME induced diverse cellular responses such as cell proliferation inhibition, cell cycle dysregulation and S phase arrest. Microarray and methylome analyses revealed that DME upregulated a number of genes including cell cycle components, heat shock proteins, and notably, various interferon-stimulated genes. Moreover, DME-mediated DNA demethylation activated endogenous repeat elements, which are likely to form dsRNAs as viral mimics and eventually trigger interferon cascades to establish the antiviral state. This work demonstrates that plant DNA demethylase catalyzes DNA demethylation with a bypass of initial base conversion steps, and the interferon signaling plays a pivotal role to alleviate genotoxic stresses associated with DME-induced DNA demethylation in mammalian cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。