Butyrate reduces cellular magnesium absorption independently of metabolic regulation in Caco-2 human colon cells

丁酸盐在Caco-2人结肠细胞中降低细胞镁吸收,且该作用独立于代谢调节。

阅读:3
作者:Lisanne M M Gommers ,Pieter A Leermakers ,Jenny van der Wijst ,Sara R Roig ,Anastasia Adella ,Melissa A E van de Wal ,René J M Bindels ,Jeroen H F de Baaij # ,Joost G J Hoenderop #

Abstract

Digestion of dietary fibers by gut bacteria has been shown to stimulate intestinal mineral absorption [e.g., calcium (Ca2+) and magnesium (Mg2+)]. Although it has been suggested that local pH and short-chain fatty acid (SCFA) concentrations determine divalent cation absorption, the exact molecular mechanisms are still unknown. Therefore, this study aimed to determine the effects of SCFAs on intestinal Mg2+ absorption. We show that the butyrate concentration in the colon negatively correlates with serum Mg2+ levels in wildtype mice. Moreover, Na-butyrate significantly inhibited Mg2+ uptake in Caco-2 cells, while Ca2+ uptake was unaffected. Although Na-butyrate significantly lowered total ATP production rate, and resulted in increased phosphorylation of AMP-activated protein kinase (AMPK), inhibition of Mg2+ uptake by butyrate preceded these consequences. Importantly, electrophysiological examinations demonstrated that intracellular butyrate directly reduced the activity of the heteromeric Mg2+ channel complex, transient receptor potential melastatin (TRPM)6/7. Blocking cellular butyrate uptake prevented its inhibitory effect on Mg2+ uptake, demonstrating that butyrate acts intracellularly. Our work identified butyrate as novel regulator of intestinal Mg2+ uptake that works independently from metabolic regulation. This finding further highlights the role of microbial fermentation in the regulation of mineral absorption.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。