Combustion Synthesis of Materials for Application in Supercapacitors: A Review

超级电容器材料的燃烧合成:综述

阅读:7
作者:Narek Sisakyan, Gayane Chilingaryan, Aram Manukyan, Alexander S Mukasyan

Abstract

A supercapacitor is an energy storage device that has the advantage of rapidly storing and releasing energy compared to traditional batteries. One powerful method for creating a wide range of materials is combustion synthesis, which relies on self-sustained chemical reactions. Specifically, solution combustion synthesis involves mixing reagents at the molecular level in an aqueous solution. This method allows for the fabrication of various nanostructured materials, such as binary and complex oxides, sulfides, and carbon-based nanocomposites, which are commonly used for creating electrodes in supercapacitors. The solution combustion synthesis offers flexibility in tuning the properties of the materials by adjusting the composition of the reactive solution, the type of fuel, and the combustion conditions. The process takes advantage of high temperatures, short processing times, and significant gas release to produce well crystalline nanostructured materials with a large specific surface area. This specific surface area is essential for enhancing the performance of electrodes in supercapacitors. Our review focuses on recent publications in this field, specifically examining the relationship between the microstructure of materials and their electrochemical properties. We discuss the findings and suggest potential improvements in the properties and stability of the fabricated composites based on the results.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。