Mediator Subunit MED25 Physically Interacts with PHYTOCHROME INTERACTING FACTOR4 to Regulate Shade-Induced Hypocotyl Elongation in Tomato

介导亚基 MED25 与光敏色素相互作用因子 4 发生物理相互作用,调控番茄遮荫诱导的下胚轴伸长

阅读:8
作者:Wenjing Sun, Hongyu Han, Lei Deng, Chuanlong Sun, Yiran Xu, Lihao Lin, Panrong Ren, Jiuhai Zhao, Qingzhe Zhai, Chuanyou Li

Abstract

Shade triggers important adaptive responses such as the shade-avoidance syndrome, which enable plants to respond to the depletion of photosynthetically active light. The basic helix-loop-helix transcription factors PHYTOCHROME INTERACTING FACTORS (PIFs) play a key role in the shade-avoidance syndrome network by regulating the biosynthesis of multiple phytohormones and the expression of cell expansion-related genes. Although much has been learned about the regulation of PIFs in response to shade at the protein level, relatively little is known about the PIF-dependent transcriptional regulation of shade-responsive genes. Mediator is an evolutionarily conserved transcriptional coactivator complex that bridges gene-specific transcription factors with the RNA polymerase II (Pol II) machinery to regulate gene transcription. Here, we report that tomato (Solanum lycopersicum) PIF4 plays an important role in shade-induced hypocotyl elongation by regulating the expression of genes that encode auxin biosynthesis and auxin signaling proteins. During this process, Mediator subunit25 (MED25) physically interacts with PIF4 at the promoter regions of PIF4 target genes and also recruits Pol II to induce gene transcription. Thus, MED25 directly bridges the communication between PIF4 and Pol II general transcriptional machinery to regulate shade-induced hypocotyl elongation. Overall, our results reveal a novel role of MED25 in PIF4-mediated transcriptional regulation under shade.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。