STING Agonist-Loaded Nanoparticles Promotes Positive Regulation of Type I Interferon-Dependent Radioimmunotherapy in Rectal Cancer

载有 STING 激动剂的纳米粒子促进直肠癌 I 型干扰素依赖性放射免疫治疗的正向调节

阅读:7
作者:Lei Wang, Han Zhou, Qingjing Chen, Zhiwen Lin, Chenwei Jiang, Xingte Chen, Mingdong Chen, Libin Liu, Lingdong Shao, Xiaolong Liu, Jianji Pan, Jingcheng Wu, Jibin Song, Junxin Wu, Da Zhang

Abstract

Hypoxia-associated radioresistance in rectal cancer (RC) has severely hampered the response to radioimmunotherapy (iRT), necessitating innovative strategies to enhance RC radiosensitivity and improve iRT efficacy. Here, a catalytic radiosensitizer, DMPtNPS, and a STING agonist, cGAMP, are integrated to overcome RC radioresistance and enhance iRT. DMPtNPS promotes efficient X-ray energy transfer to generate reactive oxygen species, while alleviating hypoxia within tumors, thereby increasing radiosensitivity. Mechanistically, the transcriptomic and immunoassay analysis reveal that the combination of DMPtNPS and RT provokes bidirectional regulatory effects on the immune response, which may potentially reduce the antitumor efficacy. To mitigate this, cGAMP is loaded into DMPtNPS to reverse the negative impact of DMPtNPS and RT on the tumor immune microenvironment (TiME) through the type I interferon-dependent pathway, which promotes cancer immunotherapy. In a bilateral tumor model, the combination treatment of RT, DMPtNPS@cGAMP, and αPD-1 demonstrates a durable complete response at the primary site and enhanced abscopal effect at the distant site. This study highlights the critical role of incorporating catalytic radiosensitizers and STING agonists into the iRT approach for RC.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。