Isoquercitrin attenuates the osteoclast-mediated bone loss in rheumatoid arthritis via the Nrf2/ROS/NF-κB pathway

异槲皮苷通过 Nrf2/ROS/NF-κB 通路减轻类风湿关节炎中破骨细胞介导的骨质流失

阅读:5
作者:Yan Liu, Tian-Qi Li, Jin Bai, Wei-Li Liu, Zi-Rou Wang, Chong Feng, Ling-Ling Pu, Xin-Xing Wang, Hui Liu

Abstract

An excess of osteoclastogenesis significantly contributes to the development of rheumatoid arthritis (RA). Activation of the nuclear factor erythroid-2 related factor 2 (Nrf2) and nuclear factor kappa B (NF-κB) ligand (RANKL)-induced reactive oxygen species (ROS)-to-NF-κB signaling cascade are important mechanisms regulating osteoclastogenesis; however, whether Nrf2 is involved in RANKL-induced NF-κB activation is controversial. Isoquercitrin, a natural flavonoid compound, has been shown to have Nrf2-dependent antioxidant effects inprevious studies. We sought to verify whether isoquercitrin could modulate RANKL-induced NF-κB activation by activating Nrf2, thereby affecting osteoclastogenesis. Tartrate-resistant acid phosphatase staining, F-actin ring staining and resorption pit assay suggested that isoquercitrin significantly inhibited osteoclastogenesis and osteolytic function. Mitosox staining showed that RANKL-induced ROS generation was significantly inhibited by isoquercitrin from day 3 of the osteoclast differentiation cycle. Quantitative real-time PCR, Western blot, and immunofluorescence indicated that isoquercitrin activated the Nrf2 signaling pathway and inhibited NF-κB expression. And when we used the Nrf2-specific inhibitor ML385, the inhibition of NF-κB by isoquercitrin disappeared. Moreover, we found that Nrf2 is not uninvolved in RANKL-induced NF-κB activation and may be related to the timing of ROS regulation. When we limited isoquercitrin administration to 2 days, Nrf2 remained activated and the inhibition of NF-κB disappeared. In vivo experiments suggested that isoquercitrin attenuated RA modeling-induced bone loss. Overall, isoquercitrin-activated Nrf2 blocked the RANKL-induced ROS-to-NF-κB signaling cascade response, thereby inhibiting osteoclastogenesis and bone loss. These findings provide new ideas for the treatment of RA.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。