Development of a Spinal Cord Injury Model Permissive to Study the Cardiovascular Effects of Rehabilitation Approaches Designed to Induce Neuroplasticity

开发脊髓损伤模型,用于研究旨在诱导神经可塑性的康复方法对心血管的影响

阅读:5
作者:Liisa Wainman, Erin L Erskine, Mehdi Ahmadian, Thomas Matthew Hanna, Christopher R West

Abstract

As primary medical care for spinal cord injury (SCI) has improved over the last decades there are more individuals living with neurologically incomplete (vs. complete) cervical injuries. For these individuals, a number of promising therapies are being actively researched in pre-clinical settings that seek to strengthen the remaining spinal pathways with a view to improve motor function. To date, few, if any, of these interventions have been tested for their effectiveness to improve autonomic and cardiovascular (CV) function. As a first step to testing such therapies, we aimed to develop a model that has sufficient sparing of descending sympathetic pathways for these interventions to target yet induces robust CV impairment. Twenty-six Wistar rats were assigned to SCI (n = 13) or naïve (n = 13) groups. Animals were injured at the T3 spinal segment with 300 kdyn of force. Fourteen days post-SCI, left ventricular (LV) and arterial catheterization was performed to assess in vivo cardiac and hemodynamic function. Spinal cord lesion characteristics along with sparing in catecholaminergic and serotonergic projections were determined via immunohistochemistry. SCI produced a decrease in mean arterial pressure of 17 ± 3 mmHg (p < 0.001) and left ventricular contractility (end-systolic elastance) of 0.7 ± 0.1 mmHg/µL (p < 0.001). Our novel SCI model produced significant decreases in cardiac and hemodynamic function while preserving 33 ± 9% of white matter at the injury epicenter, which we believe makes it a useful pre-clinical model of SCI to study rehabilitation approaches designed to induce neuroplasticity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。