An in vitro model of foam cell formation induced by a stretchable microfluidic device

可拉伸微流体装置诱导泡沫细胞形成的体外模型

阅读:5
作者:Xiaoyang Gu, Shijie Xie, Dandan Hong, Yongsheng Ding

Abstract

Although a variety of animal models of atherosclerosis have been developed, these models are time-consuming and costly. Here, we describe an in vitro model to induce foam cell formation in the early stage of atherosclerosis. This model is based on a three-dimension co-culture system in a stretchable microfluidic device. An elastic membrane embedded in the microfluidic device is capable of delivering nonuniform strain to vascular smooth muscle cells, endothelial cells and monocytes adhering thereto, which are intended to mimic the biological environment of blood vessels. Under low-density lipoprotein and stretch treatment, foam cell formation was successfully induced in co-culture with changes in mRNA and protein expression of some related key factors. Subsequently, the model was used to assess the inhibitory effect of atorvastatin on foam cell formation. The results obtained indicate that atorvastatin has a significantly dose-dependent inhibition of foam cell formation, which can be explained by the changes in mRNA and protein expression of the related factors. In principle, the model can be used to study the role of different types of cells in the formation of foam cells, as well as the evaluation of anti-atherosclerotic drugs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。