Serotonin functions as a bidirectional guidance molecule regulating growth cone motility

血清素作为调节生长锥运动的双向引导分子

阅读:7
作者:Silvia Vicenzi, Lisa Foa, Robert J Gasperini

Abstract

The neurotransmitter serotonin has been implicated in a range of complex neurological disorders linked to alterations of neuronal circuitry. Serotonin is synthesized in the developing brain before most neuronal circuits become fully functional, suggesting that serotonin might play a distinct regulatory role in shaping circuits prior to its function as a classical neurotransmitter. In this study, we asked if serotonin acts as a guidance cue by examining how serotonin alters growth cone motility of rodent sensory neurons in vitro. Using a growth cone motility assay, we found that serotonin acted as both an attractive and repulsive guidance cue through a narrow concentration range. Extracellular gradients of 50 µM serotonin elicited attraction, mediated by the serotonin 5-HT2a receptor while 100 µM serotonin elicited repulsion mediated by the 5-HT1b receptor. Importantly, high resolution imaging of growth cones indicated that these receptors signalled through their canonical pathways of endoplasmic reticulum-mediated calcium release and cAMP depletion, respectively. This novel characterisation of growth cone motility in response to serotonin gradients provides compelling evidence that secreted serotonin acts at the molecular level as an axon guidance cue to shape neuronal circuit formation during development.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。