Pericentromeric recombination suppression and the 'large X effect' in plants

植物着丝粒周围重组抑制和“大X效应”

阅读:6
作者:Edgar L Y Wong, Dmitry A Filatov

Abstract

X chromosome was reported to be a major contributor to isolation between closely related species-the 'large X' effect (LXE). The causes of LXE are not clear, but the leading theory is that it is caused by recessive species incompatibilities exposed in the phenotype due to the hemizygosity of X-linked genes in the heterogametic sex. However, the LXE was also reported in species with relatively recently evolved sex chromosomes where Y chromosome is not completely degenerate and X-linked genes are not hemizygous, such as the plant Silene latifolia. Recent genome sequencing and detailed genetic mapping in this species revealed a massive (> 330 Mb) non- or rarely-recombining pericentromeric region on the X chromosome (Xpr) that comprises ~ 90% of the chromosome and over 13% of the entire genome. If any of the Xpr genes are involved in species incompatibilities, this would oppose interspecific gene flow for other genes tightly linked in the Xpr. Here we test the hypothesis that the previously reported LXE in S. latifolia is caused by the lack of recombination on most of the X chromosome. Based on genome-wide analysis of DNA polymorphism and gene expression in S. latifolia and its close cross-compatible relative S. dioica, we report that the rarely-recombining regions represent a significant barrier for interspecific gene flow. We found little evidence for any additional factors contributing to the LXE, suggesting that extensive pericentromeric recombination suppression on the X-chromosome is the major if not the only cause of the LXE in S. latifolia and S. dioica.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。