Prophylactic inhibition of neutrophil elastase prevents the development of chronic neuropathic pain in osteoarthritic mice

预防性抑制中性粒细胞弹性蛋白酶可防止骨关节炎小鼠出现慢性神经性疼痛

阅读:5
作者:Milind M Muley, Eugene Krustev, Allison R Reid, Jason J McDougall

Background

A subset of osteoarthritis (OA) patients experience joint pain with neuropathic characteristics. Mediators such as neutrophil elastase, a serine proteinase, may be released during acute OA inflammatory flares. We have previously shown that local administration of neutrophil elastase causes joint inflammation and pain via activation of proteinase-activated receptor-2 (PAR2). The

Conclusions

Neutrophil elastase and PAR2 contribute significantly to the development of joint inflammation, pain, and peripheral neuropathy associated with experimental OA, suggesting their potential as therapeutic targets.

Methods

MIA (0.3 mg/10 μl) was injected into the right knee joint of male C57BL/6 mice (20-34 g). Joint inflammation (edema, leukocyte kinetics), neutrophil elastase proteolytic activity, tactile allodynia, and saphenous nerve demyelination were assessed over 14 days post-injection. The effects of inhibiting neutrophil elastase during the early inflammatory phase of MIA (days 0 to 3) were determined using sivelestat (50 mg/kg i.p.) and serpinA1 (10 μg i.p.). Involvement of PAR2 in the development of MIA-induced joint inflammation and pain was studied using the PAR2 antagonist GB83 (5 μg i.p. days 0 to 1) and PAR2 knockout animals.

Results

MIA caused an increase in neutrophil elastase proteolytic activity on day 1 (P < 0.0001), but not on day 14. MIA also generated a transient inflammatory response which peaked on day 1 (P < 0.01) then subsided over the 2-week time course. Joint pain appeared on day 1 and persisted to day 14 (P < 0.0001). By day 14, the saphenous nerve showed signs of demyelination. Early treatment with sivelestat and serpinA1 blocked the proteolytic activity of neutrophil elastase on day 1 (P < 0.001), and caused lasting improvements in joint inflammation, pain, and saphenous nerve damage (P < 0.05). MIA-induced synovitis was reversed by early treatment with GB83 and attenuated in PAR2 knockout mice (P < 0.05). PAR2 knockout mice also showed reduced MIA-induced joint pain (P < 0.0001) and less nerve demyelination (P = 0.81 compared to saline control). Conclusions: Neutrophil elastase and PAR2 contribute significantly to the development of joint inflammation, pain, and peripheral neuropathy associated with experimental OA, suggesting their potential as therapeutic targets.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。