Serine Metabolism Controls Dental Pulp Stem Cell Aging by Regulating the DNA Methylation of p16

丝氨酸代谢通过调节 p16 的 DNA 甲基化来控制牙髓干细胞衰老

阅读:6
作者:R L Yang, H M Huang, C S Han, S J Cui, Y K Zhou, Y H Zhou

Abstract

To investigate the characteristics and molecular events of dental pulp stem cells (DPSCs) for tissue regeneration with aging, we isolated and analyzed the stem cells from human exfoliated deciduous teeth (SHED) and permanent teeth of young (Y-DPSCs) and old (A-DPSCs) adults. Results showed that the stemness and osteogenic differentiation capacity of DPSCs decreased with aging. The RNA sequencing results showed that glycine, serine, and threonine metabolism was one of the most enriched gene clusters among SHED, Y-DPSCs, and A-DPSCs, according to analysis based on the Kyoto Encyclopedia of Genes and Genomes. The expression of serine metabolism-related enzymes phosphoserine aminotransferase 1 (PSAT1) and phosphoglycerate (PHGDH) decreased in A-DPSCs and provided less methyl donor S-adenosylmethionine (SAM) for DNA methylation, leading to the hypomethylation of the senescence marker p16 (CDNK2A). Furthermore, the proliferation and differentiation capacity of Y-DPSCs and SHED decreased after PHGDH siRNA treatment, which reduced the level of SAM. Convincingly, the ratios of PSAT1-, PHGDH-, or proliferating cell nuclear antigen-positive cells in the dental pulp of old permanent teeth were less than those in the dental pulp of deciduous teeth and young permanent teeth. In summary, the stemness and differentiation capacity of DPSCs decreased with aging. The decreased serine metabolism in A-DPSCs upregulated the expression of p16 via attenuating its DNA methylation, resulting in DPSC aging. Our finding indicated that serine metabolism and 1 carbon unit participated in stem cell aging, which provided new direction for stem cell aging study and intervention.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。