Reverse translating SULT1A1, a potential biomarker in roentgenographically tested rat model of rapid HAPE induction

逆转录 SULT1A1 是快速诱发高海拔肺水肿的大鼠模型中的潜在生物标志物

阅读:7
作者:Subhojit Paul, Anamika Gangwar, Himadri Patir, Kalpana Bhargava, Yasmin Ahmad

Aims

HAPE remains the most common lethal high-altitude disease. Although its pathophysiology and other associated causal factors have been partially uncovered along with some potential biomarker proteins, it has not been completely elucidated. A major hindrance to improving the understanding of HAPE pathophysiology and associated molecular events has been the absence of a quick, reliable and definitive animal model of HAPE. This study is aimed at development of a rapid and reliable SD rat model of high altitude pulmonary edema (HAPE) that can be roentgenographically confirmed and be used to study protein markers of HAPE. Main

Methods

In this study, we detail the process of rapidly inducing HAPE in male SD rats within 18 h of simulated high-altitude exposure without causing high rates of mortality. Thereafter, we confirmed HAPE using roentgenography. We assessed Sulfotransferase 1A1 (SULT1A1), IL-1 beta, TNF- alpha and IFN-gamma using ELISA. Finally, H&E staining of lung tissues was also performed. Key findings: A roentgenographically confirmed HAPE model was demonstrated. SULT 1A1 levels are found to be highest in rats suffering HAPE, as previously confirmed in human patients. Inflammation was also assessed based on levels of inflammatory proteins like IL-1b, TNF-a, and IFN-g in addition to H&E staining of lung tissues. Inflammation and HAPE were observed to be synergistic events and not cause and effect of each other. Significance: This rat model of HAPE will help researchers and clinicians in evaluating performance of therapies, potential biomarker and also further elucidate underlying molecular processes causing HAPE.

Significance

This rat model of HAPE will help researchers and clinicians in evaluating performance of therapies, potential biomarker and also further elucidate underlying molecular processes causing HAPE.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。