Transcriptomic analysis revealed the mechanism of oil dynamic accumulation during developing Siberian apricot (Prunus sibirica L.) seed kernels for the development of woody biodiesel

转录组分析揭示了西伯利亚杏 (Prunus sibirica L.) 种仁发育过程中油脂动态积累的机制,从而促进了木质生物柴油的开发

阅读:6
作者:Jun Niu #, Jiyong An #, Libing Wang, Chengliang Fang #, Denglong Ha, Chengyu Fu, Lin Qiu, Haiyan Yu, Haiyan Zhao, Xinyu Hou, Zheng Xiang, Sufan Zhou, Zhixiang Zhang, Xinyi Feng, Shanzhi Lin

Background

Siberian apricot (Prunus sibirica L.) has emerged as a novel potential source of biodiesel in China, but the molecular regulatory mechanism of oil accumulation in Siberian apricot seed kernels (SASK) is still unknown at present. To better develop SASK oil as woody biodiesel, it is essential to profile transcriptome and to identify the full repertoire of potential unigenes involved in the formation and accumulation of oil SASK during the different developing stages.

Conclusions

This is the first study of oil temporal patterns, transcriptome sequencings, and differential profiles in developing SASK. All our results will serve as the important foundation to further deeply explore the regulatory mechanism of SASK high-quality oil accumulation, and may also provide some reference for researching the woody biodiesel plants.

Results

We firstly detected the temporal patterns for oil content and fatty acid (FA) compositions of SASK in 7 different developing stages. The best time for obtaining the high quality and quantity of SASK oil was characterized at 60 days after flowering (DAF), and the representative periods (10, 30, 50, 60, and 70 DAF) were selected for transcriptomic analysis. By Illumina/Solexa sequencings, approximately 65 million short reads (average length = 96 bp) were obtained, and then assembled into 124,070 unigenes by Trinity strategy (mean size = 829.62 bp). A total of 3,000, 2,781, 2,620, and 2,675 differentially expressed unigenes were identified at 30, 50, 60, and 70 DAF (10 DAF as the control) by DESeq method, respectively. The relationship between the unigene transcriptional profiles and the oil dynamic patterns in developing SASK was comparatively analyzed, and the specific unigenes encoding some known enzymes and transcription factors involved in acetyl-coenzyme A (acetyl-CoA) formation and oil accumulation were determined. Additionally, 5 key metabolic genes implicated in SASK oil accumulation were experimentally validated by quantitative real-time PCR (qRT-PCR). Our findings could help to construction of oil accumulated pathway and to elucidate the molecular regulatory mechanism of increased oil production in developing SASK. Conclusions: This is the first study of oil temporal patterns, transcriptome sequencings, and differential profiles in developing SASK. All our results will serve as the important foundation to further deeply explore the regulatory mechanism of SASK high-quality oil accumulation, and may also provide some reference for researching the woody biodiesel plants.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。