p66Shc protein through a redox mechanism enhances the progression of prostate cancer cells towards castration-resistance

p66Shc 蛋白通过氧化还原机制促进前列腺癌细胞向去势抵抗性发展

阅读:8
作者:Dannah R Miller, Matthew A Ingersoll, Arpita Chatterjee, Brian Baker, Shashank Shrishrimal, Elizabeth A Kosmacek, Yuxiang Zhu, Pi-Wan Cheng, Rebecca E Oberley-Deegan, Ming-Fong Lin

Abstract

Prostate cancer (PCa) remains the second leading cause of cancer-related deaths in U.S. men due to the development of the castration-resistant (CR) PCa phenotype. A useful cell model for analysis of the molecular mechanism of PCa progression is required for developing targeted therapies toward CR PCa. In this study, we established a PCa cell progressive model in three separate cell lines, of which androgen-independent (AI) cells were derived from respective androgen-sensitive (AS) cells. Those AI PCa cells obtain the biochemical properties of the clinical CR phenotype, including AR and PSA expression as well as enhanced proliferation and tumorigenicity under androgen-deprived conditions. Thus, those AI cells recapitulate CR PCa and exhibit increased oxidant species levels as well as enhanced signaling of proliferation and survival pathways. H2O2 treatment directly enhanced AS cell growth and migration, which was counteracted by antioxidant N-acetyl cysteine (NAC). We further identified p66Shc protein enhances the production of oxidant species which contributes to phenotypic and cell signaling alterations from AS to AI PCa cells. H2O2-treated LNCaP-AS cells had a similar signaling profile to that of LNCaP-AI or p66Shc subclone cells. Conversely, the oxidant species-driven alterations of LNCaP-AI and p66Shc subclone cell signaling is mitigated by p66Shc knockdown. Moreover, LNCaP-AI cells and p66Shc subclones, but not LNCaP-AS cells, develop xenograft tumors with metastatic nodules, correlating with p66Shc protein levels. Together, the data shows that p66Shc enhances oxidant species production that plays a role in promoting PCa progression to the CR stage.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。