The role of some chemokines from the CXC subfamily in a mouse model of diabetic neuropathy

CXC 亚家族某些趋化因子在糖尿病神经病变小鼠模型中的作用

阅读:4
作者:Magdalena Zychowska, Ewelina Rojewska, Dominika Pilat, Joanna Mika

Abstract

The mechanism involved in the development of diabetic neuropathy is complex. Currently, it is thought that chemokines play an important role in this process. The aim of this study was to determine how the level of some chemokines from the CXC subfamily varies in diabetic neuropathy and how the chemokines affect nociceptive transmission. A single intraperitoneal (i.p.) injection of streptozotocin (STZ; 200 mg/kg) resulted in an increased plasma glucose. The development of allodynia and hyperalgesia was measured at day 7 after STZ administration. Using Antibody Array techniques, the increases in CXCL1 (KC), CXCL5 (LIX), CXCL9 (MIG), and CXCL12 (SDF-1) protein levels were detected in STZ-injected mice. No changes in CXCL11 (I-TAC) or CXCL13 (BLC) protein levels were observed. The single intrathecal (i.t.) administration of CXCL1, CXCL5, CXCL9, and CXCL12 (each in doses of 10, 100, and 500 ng/5 μL) shows their pronociceptive properties as measured 1, 4, and 24 hours after injection using the tail-flick, von Frey, and cold plate tests. These findings indicate that the chemokines CXCL1, CXCL5, CXCL9, and CXCL12 are important in nociceptive transmission and may play a role in the development of diabetic neuropathy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。