Increased Toxoplasma gondii Intracellular Proliferation in Human Extravillous Trophoblast Cells (HTR8/SVneo Line) Is Sequentially Triggered by MIF, ERK1/2, and COX-2

人类绒毛外滋养层细胞(HTR8/SVneo 系)中弓形虫细胞内增殖增加由 MIF、ERK1/2 和 COX-2 依次触发

阅读:4
作者:Iliana Claudia Balga Milian, Rafaela José Silva, Camilla Manzan-Martins, Bellisa Freitas Barbosa, Pamela Mendonça Guirelli, Mayara Ribeiro, Angelica de Oliveira Gomes, Francesca Ietta, José Roberto Mineo, Priscila Silva Franco, Eloisa Amália Vieira Ferro

Abstract

Macrophage migration inhibitory factor (MIF) is a potent pro-inflammatory cytokine, which mediates the regulation of diverse cellular functions. It is produced by extravillous trophoblastic cells and has been found to be involved in the pathogenesis of diseases caused by some protozoa, including Toxoplasma gondii. Previous studies demonstrated the ability of T. gondii to take advantage of MIF action in human trophoblast cells. However, MIF action in T. gondii-infected extravillous trophoblastic cells (HTR8/SVneo cell line) has not been fully investigated. The present study aimed to investigate the role of MIF in T. gondii-infected HTR8/SVneo cells and verify the intracellular signaling pathways triggered by this cytokine. We found that T. gondii increased MIF production by HTR8/SVneo cells, and by contrast, MIF inhibition, by ISO-1, led to a significant decrease in T. gondii proliferation and CD74 expression in HTR8/SVneo cells. Moreover, in infected HTR8/SVneo cells, the addition of recombinant MIF (rMIF) increased CD44 co-receptor expression, ERK1/2 phosphorylation, COX-2 expression, and IL-8 production, which favored T. gondii proliferation. Our findings indicate that T. gondii can use MIF to modulate important factors in HTR8/SVneo cells, being a possible explanation for the higher susceptibility of extravillous trophoblast cells than other trophoblast cell populations.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。