Modelling ischemia-reperfusion injury (IRI) in vitro using metabolically matured induced pluripotent stem cell-derived cardiomyocytes

使用代谢成熟的诱导性多能干细胞衍生的心肌细胞在体外模拟缺血-再灌注损伤 (IRI)

阅读:4
作者:Alejandro Hidalgo, Nick Glass, Dmitry Ovchinnikov, Seung-Kwon Yang, Xinli Zhang, Stuart Mazzone, Chen Chen, Ernst Wolvetang, Justin Cooper-White

Abstract

Coronary intervention following ST-segment elevation myocardial infarction (STEMI) is the treatment of choice for reducing cardiomyocyte death but paradoxically leads to reperfusion injury. Pharmacological post-conditioning is an attractive approach to minimize Ischemia-Reperfusion Injury (IRI), but candidate drugs identified in IRI animal models have performed poorly in human clinical trials, highlighting the need for a human cell-based model of IRI. In this work, we show that when we imposed sequential hypoxia and reoxygenation episodes [mimicking the ischemia (I) and reperfusion (R) events] to immature human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs), they display significant hypoxia resistance and minimal cell death (∼5%). Metabolic maturation of hPSC-CMs for 8 days substantially increased their sensitivity to changes in oxygen concentration and led to up to ∼30% cell death post-hypoxia and reoxygenation. To mimic the known transient changes in the interstitial tissue microenvironment during an IRI event in vivo, we tested a new in vitro IRI model protocol that required glucose availability and lowering of media pH during the ischemic episode, resulting in a significant increase in cell death in vitro (∼60%). Finally, we confirm that in this new physiologically matched IRI in vitro model, pharmacological post-conditioning reduces reperfusion-induced hPSC-CM cell death by 50%. Our results indicate that in recapitulating key aspects of an in vivo IRI event, our in vitro model can serve as a useful method for the study of IRI and the validation and screening of human specific pharmacological post-conditioning drug candidates.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。