Identification of on-target mutagenesis during correction of a beta-thalassemia splice mutation in iPS cells with optimised CRISPR/Cas9-double nickase reveals potential safety concerns

使用优化的 CRISPR/Cas9 双切口酶纠正 iPS 细胞中的 β-地中海贫血剪接突变期间识别靶向诱变,揭示了潜在的安全问题

阅读:7
作者:Suad Alateeq, Dmitry Ovchinnikov, Timothy Tracey, Deanne Whitworth, Abdullah Al-Rubaish, Amein Al-Ali, Ernst Wolvetang

Abstract

Precise and accurate gene correction is crucial for enabling iPSC-based therapies, and Cas9-Nickase based approaches are increasingly considered for in vivo correction of diseases such as beta-thalassemia. Here, we generate footprint-free induced pluripotent stem cells from a patient with a beta-thalassemia mutation (IVSII-1 G > A) and employ a double Cas9nickase-mediated correction strategy combined with a piggyBac transposon-modified donor vector for gene correction. Our approach further aimed to minimize the formation of adjacent single-strand breaks at the targeted allele through the destruction of the binding site for one guide and the use of a synonymous protospacer adjacent motif blocking mutation (canonical PAM sequence 5'-NGG-3' is changed to 5'-NCG-3', where N indicates any nucleobase) for the other guide. We show that this strategy indeed not only permits bi-allelic seamless repair of the beta-globin gene splice site mutation and negligible off-target mutagenesis or re-editing of the targeted allele but also results in unexpected on-target mutagenesis with some guide RNAs (gRNAs) in several targeted clones. This study thus not only validates a framework for seamless gene correction with enhanced specificity and accuracy but also highlights potential safety concerns associated with Cas9-nickase based gene correction.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。