TNF-α-induced miR-155 regulates IL-6 signaling in rheumatoid synovial fibroblasts

TNF-α 诱导的 miR-155 调节类风湿滑膜成纤维细胞中的 IL-6 信号传导

阅读:5
作者:Kiyoshi Migita, Nozomi Iwanaga, Yasumori Izumi, Chieko Kawahara, Kenji Kumagai, Tadashi Nakamura, Tomohiro Koga, Atsushi Kawakami

Background

MicroRNAs (miRNAs) are important regulators of a variety of inflammatory mediators. The present study was undertaken to elucidate the role of miRNAs in the rheumatoid cytokine network.

Conclusions

The current results demonstrate that TNF-α modulated miRNA expressions in RASFs. Our data showed that miR-155, which is highly induced by TNF-α stimulation, inhibits IL-6-mediated JAK2/STAT3 activation in RASFs. These findings suggest that miR-155 contributes to the cross-regulation between TNF-α and IL-6-mediated inflammatory pathways in RA.

Methods

We analyzed miRNA expression in rheumatoid synovial fibroblasts (RASFs). miRNA array-based screening was used to identify miRNAs differentially expressed between tumor necrosis factor-α (TNF-α)-activated RASFs and untreated RASFs. Transfection of RASFs with miR-155 was used to analyze the function of miR-155. Real-time polymerase chain reaction (PCR) was used to measure the levels of miR-155 in RASFs.

Results

miRNA microarray analysis revealed that miR-155-5p was the most highly induced miRNA in TNF-α-stimulated RASFs. TNF-α-induced miR-155 expression in RASFs was time-dependent and TNFα dose-dependent, whereas, IL-6 stimulation did not affect miR-155 expression in RASFs. Transfection of miR-155 mimics into RASFs resulted in the decrease JAK2/STAT3 phosphorylation in IL-6-treated RASFs. Conclusions: The current results demonstrate that TNF-α modulated miRNA expressions in RASFs. Our data showed that miR-155, which is highly induced by TNF-α stimulation, inhibits IL-6-mediated JAK2/STAT3 activation in RASFs. These findings suggest that miR-155 contributes to the cross-regulation between TNF-α and IL-6-mediated inflammatory pathways in RA.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。