Significance
Mechanical stress patterns emerging from collective cell behavior play critical roles in morphogenesis, tissue repair, and cancer metastasis. Much has been learned of these collective behaviors by utilizing microcontact printing to constrain cell monolayers (aggregates) into specific shapes. Here we utilize these tools along with long-term video microscopy tracking of individual aggregates to determine how heterogeneous collective behaviors unique to primary fibroblastic cells emerge over time and diverge from computed stress fields. We find that dense multicellular bands form from local collective behavior and disrupt the global collective behavior resulting in heterogeneous patterns of migration, traction stresses, proliferation, and apoptosis. This local emergent behavior within aggregated fibroblasts may play an important role in development and disease of connective tissues.
Statement of significance
Mechanical stress patterns emerging from collective cell behavior play critical roles in morphogenesis, tissue repair, and cancer metastasis. Much has been learned of these collective behaviors by utilizing microcontact printing to constrain cell monolayers (aggregates) into specific shapes. Here we utilize these tools along with long-term video microscopy tracking of individual aggregates to determine how heterogeneous collective behaviors unique to primary fibroblastic cells emerge over time and diverge from computed stress fields. We find that dense multicellular bands form from local collective behavior and disrupt the global collective behavior resulting in heterogeneous patterns of migration, traction stresses, proliferation, and apoptosis. This local emergent behavior within aggregated fibroblasts may play an important role in development and disease of connective tissues.
