SIRT3 alleviates mitochondrial dysfunction induced by recurrent low glucose and improves the supportive function of astrocytes to neurons

SIRT3 减轻反复低糖引起的线粒体功能障碍并改善星形胶质细胞对神经元的支持功能

阅读:6
作者:Ruonan Gao, Zhou Chen, Yubin Wu, Ruiyu Chen, Wenrong Zheng, Liqin Qi, Xiaoying Liu, Xiaohong Liu, Libin Liu

Abstract

Hypoglycemia is an independent risk factor of cognitive impairment in patients with diabetes. Our previous study indicated that dysfunction of astrocytic mitochondria induced by recurrent low glucose (RLG) may account for hypoglycemia-associated neuronal injury and cognitive decline. Sirtuin 3 (SIRT3) is a key deacetylase for mitochondrial proteins and has recently been demonstrated to be an important regulator of mitochondrial function. However, whether mitochondrial dysfunction due to hypoglycemia is associated with astrocytic SIRT3 remains unclear, and few studies have focused on the impact of astrocytic SIRT3 on neuronal survival. In the present work, primary mouse cortical astrocytes cultured in normal glucose (5.5 mM) and high glucose (16.5 mM) were treated with five rounds of RLG (0.1 mM). The results showed that RLG suppressed SIRT3 expression in a glucose-dependent manner. High-glucose culture considerably increased the vulnerability of SIRT3 to RLG, leading to disrupted mitochondrial morphology in astrocytes. Overexpression of SIRT3 markedly improved astrocytic mitochondrial function and reduced RLG-induced oxidative stress. Moreover, SIRT3 suppressed a shift towards a neuroinflammatory A1-like reactive phenotype of astrocytes in response to RLG with reduced IL-1β, IL-6, and TNFα levels. Furthermore, it elevated brain-derived neurotrophic factor (BDNF) levels and promoted neurite growth by activating BDNF/TrkB signaling in the co-cultured neurons. The present study reveals the probable crosstalk between neurons and astrocytes after hypoglycemic exposure and provides a potential target in treating hypoglycemia-associated neuronal injury.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。