The augmentation of BK channel activity by nitric oxide signaling in rat cerebral arteries involves co-localized regulatory elements

大鼠脑动脉中一氧化氮信号增强 BK 通道活性涉及共定位调节元件

阅读:5
作者:Barry D Kyle, Ramesh C Mishra, Andrew P Braun

Abstract

Large conductance, Ca2+-activated K+ (BK) channels control cerebrovascular tone; however, the regulatory processes influencing these channels remain poorly understood. Here, we investigate the cellular mechanisms underlying the enhancement of BK current in rat cerebral arteries by nitric oxide (NO) signaling. In isolated cerebral myocytes, BK current magnitude was reversibly increased by sodium nitroprusside (SNP, 100 μM) and sensitive to the BK channel inhibitor, penitrem-A (100 nM). Fostriecin (30 nM), a protein phosphatase type 2A (PP2A) inhibitor, significantly prolonged the SNP-induced augmentation of BK current and a similar effect was produced by sildenafil (30 nM), a phosphodiesterase 5 (PDE5) inhibitor. Using proximity ligation assay (PLA)-based co-immunostaining, BK channels were observed to co-localize with PP2A, PDE5, and cGMP-dependent protein kinase (cGKI) (spatial restriction < 40 nm); cGKI co-localization increased following SNP exposure. SNP (10 μM) reversibly inhibited myogenic tone in cannulated cerebral arteries, which was augmented by either fostriecin or sildenafil and inhibited by penitrem-A. Collectively, these data suggest that (1) cGKI, PDE5, and PP2A are compartmentalized with cerebrovascular BK channels and determine the extent of BK current augmentation by NO/cGMP signaling, and (2) the dynamic regulation of BK activity by co-localized signaling enzymes modulates NO-evoked dilation of cerebral resistance arteries.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。