Porphyrin-lipid assemblies and nanovesicles overcome ABC transporter-mediated photodynamic therapy resistance in cancer cells

卟啉-脂质组装体和纳米囊泡克服了癌细胞中 ABC 转运蛋白介导的光动力疗法耐药性

阅读:7
作者:Yan Baglo, Barry J Liang, Robert W Robey, Suresh V Ambudkar, Michael M Gottesman, Huang-Chiao Huang

Abstract

Photodynamic therapy (PDT) involves light activation of the photosensitizer to generate reactive molecular species that induce cell modulation or death. Based on earlier findings showing that the photosensitizer benzoporphyrin derivative (BPD) is a breast cancer resistance protein (ABCG2) substrate, we investigated the ability of the P-glycoprotein (P-gp) and multidrug resistance-associated protein 1 (MRP1) to transport BPD. In a panel of breast cancer cell lines overexpressing P-gp, MRP1, or ABCG2, BPD transport occurs only in cells overexpressing P-gp and ABCG2. Intracellular BPD fluorescence is not affected by MRP1, as determined by flow cytometry. To bypass P-gp- and ABCG2-mediated efflux of BPD, we introduce a lipidation strategy to create BPD derivatives that are no longer P-gp and ABCG2 substrates. The phospholipid-conjugated BPD and its nanoliposomal formulation evade both P-gp- and ABCG2-mediated transport. In cytotoxicity assays, lipidated BPD and its nanoliposomal formulation abrogate P-gp- and ABCG2-mediated PDT resistance. We verify that P-gp, like ABCG2, plays a role in BPD transport and BPD-PDT resistance. Furthermore, we introduce porphyrin-lipid nanovesicles as a new strategy to escape P-gp and ABCG2-mediated efflux of BPD for improved PDT outcomes in two breast cancer cell lines.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。