Bcl-xL knockout attenuates mitochondrial respiration and causes oxidative stress that is compensated by pentose phosphate pathway activity

Bcl-xL 敲除会减弱线粒体呼吸并引起氧化应激,而戊糖磷酸途径活性可以补偿这种应激

阅读:7
作者:Annika Pfeiffer, Julia Schneider, Diones Bueno, Amalia Dolga, Timo-Daniel Voss, Jan Lewerenz, Verena Wüllner, Axel Methner

Abstract

Bcl-xL is an anti-apoptotic protein that localizes to the outer mitochondrial membrane and influences mitochondrial bioenergetics by controlling Ca2+ influx into mitochondria. Here, we analyzed the effect of mitochondrial Bcl-xL on mitochondrial shape and function in knockout (KO), wild type and rescued mouse embryonic fibroblast cell lines. Mitochondria of KO cells were more fragmented, exhibited a reduced ATP concentration, and reduced oxidative phosphorylation (OXPHOS) suggesting an increased importance of ATP generation by other means. Under steady-state conditions, acidification of the growth medium as a readout for glycolysis was similar, but upon inhibition of ATP synthase with oligomycin, KO cells displayed an instant increase in glycolysis. In addition, forced energy production through OXPHOS by replacing glucose with galactose in the growth medium rendered KO cells more susceptible to mitochondrial toxins. KO cells had increased cellular reactive oxygen species and were more susceptible to oxidative stress, but had higher glutathione levels, which were however more rapidly consumed under conditions of oxidative stress. This coincided with an increased activity and protein abundance of the pentose phosphate pathway protein glucose-6-phosphate dehydrogenase, which generates NADPH necessary to regenerate reduced glutathione. KO cells were also less susceptible to pharmacological inhibition of the pentose phosphate pathway. We conclude that mitochondrial Bcl-xL is involved in maintaining mitochondrial respiratory capacity. Its deficiency causes oxidative stress, which is associated with an increased glycolytic capacity and balanced by an increased activity of the pentose phosphate pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。